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Variational properties of steady fall in Stokes flow 

By H. F. WEINBERGER 
(Received 16 June 1971 and in revised form 18 October 1971) . 

It is shown that for a given body and a given orientation g there is always a 
position of the centre of mass which produces a stable falling motion in a very 
viscous fluid with g vertical and, in general, with a spin about the vertical axis. 
The corresponding terminal settling speed is bounded by means of several 
variational principles. 

Relations between the terminal speeds for falls with different downward 
directions and between the terminal speed and the geometry of the body are 
deduced. In  particular, it is proved that for a large class of slender bodies the first 
approximation to the drag obtained from the slender-body theory of Burgers 
(1938) is correct. It follows that the ratio of the terminal speeds for falls with the 
long axis vertical and horizontal is near two. 

1. Introduction 
It was shown experimentally by Taylor (1967, 1969) that, if a slender convex 

axially symmetric body is allowed to fall in a viscous fluid, its terminal speed when 
it falls along its axis of symmetry is about twice its terminal speed when it falls 
with its axis of symmetry in a horizontal direction. Taylor gave a heuristic 
argument using the slender-body theory of Burgers (1938) to support the con- 
jecture that this result should be true for any sufficiently slender convex axially 
symmetric body. In  this paper we shall establish this and other results by means 
of a quadratic variational theory. 

In  order to treat the problem of the steady fall of a general body in the Stokes 
regime it is first necessary to formulate physically and mathematically correct 
boundary-value problems. Two such problems are formulated in $2. In problem 1 
the downward orientation of the body is prescribed and one tries to determine a 
position of the centre of mass for which the body has a steady falling motion with 
the given direction downward. In  problem 2 the centre of mass is given and one 
wishes to find a downward orientation for which a steady falling motion exists. 
In  $ 3 we show that problem 1 has a unique solution and that problem 2 always 
has at least one solution. Moreover, we characterize the solution of problem 1 by 
several variational principles for the terminal speed. 

A minimum energy dissipation principle for a Stokes flow with given velocity 
on the boundary was introduced by Helmholtz (1868) and proved by Korteweg 
(1883). Complementary energy principles for such problems were given by Hill & 
Power (1956) and by Kearsley (1960). These principles were generalized by 
Keller, Rubenfeld & Molyneux (1967) ko a fluid containing rigid particles with 
given instantaneous positions and orientations which are settling in the fluid 
under the action of given forces and torques, and also containing inclusions of a 
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different fluid in given instantaneous positions. A further generalization t o  include 
surface tension on the boundaries of the fluid bubbles was given by Skalak (1970). 
The forces and torques on eachrigid particle must be prescribed for the variational 
principles of Keller, Rubenfeld & Molyneux and Skalak. Therefore, these 
principles cannot be applied t o  problem 1, in which the position of the centre of 
mass, and hence the gravitational torque, is to be determined. Therefore our 
variational principles do not follow from the earlier ones. Of course, all these 
variational principles fit into the framework of the general quadratic variational 
theory. (See, e.g. Diaz 1951; Mikhlin 1957; Synge 1957; Weinberger 1961.) 

It is interesting to note that we derive two non-equivalent minimum principles 
as well as a maximum principle. While these principles could be used for numeri- 
cal computation by means of the Rayleigh-Ritz method, we shall use them only 
to obtain general properties of the terminal settling speed. In  particular, we show 
in 3 3 (theorem 5) that for a given net weight the settling speed decreases if the 
body is enlarged. We also obtain a sharp bound for the settling speed in terms 
of the electrostatic capacity of the body. Our results do not require the body to 
have a smooth boundary, but they do assume that the electrostatic capacity of 
the body is positive. Thus, they apply to a disk but not to a line segment. In  fact, 
if we consider a line segment as a limit of thin ellipsoids, we see that its terminal 
settling speed should be infinite, so that the corresponding Stokes-flow problem 
has no solution. 

In $ 4  we show that if the centre of mass is sufficiently low the steady falling 
motion is the limit in the quasi-steady Stokes regime of any falling motion 
except for the unstable motion in which the body falls upside down. In  establish- 
ing this result we use the translation, rotation and coupling tensors of Brenner 
(1964), and we correlate our results with the behaviour of the coupling tensor. In 
particular, we show that falling motion without spin occurs in all directions if and 
only if the body is non-skew in the terminology of Brenner. We give a weakened 
symmetry condition which assures that the body is non-skew. 

In  $ 5  we present an isoperimetric inequality between the capacity of a body 
and its average terminal settling speed. This inequality has the interesting 
property that equality is attained for all ellipsoids. A classical symmetrization 
inequality then gives another isoperimetric inequality between the average 
settling speed and the volume of the body, equality being attained for the 
sphere. 

In $ 6 we establish that the terminal speed of an axially symmetric body falling 
in the axial direction is less than twice its terminal speed when it falls in a diree- 
tion perpendicular to the axis. Thus the limit, two, of the ratio of these speeds 
must be approached from below. In  $ 7 we prove that for any convex slender body 
the difference between two and the ratio of the terminal speed in the long direc- 
tion to that in a perpendicular direction is bounded by an explicit function of the 
aspect ratio E which approaches zero with E .  The proof consists of applying our 
monotonicity theorem in order to compare the settling speeds of the body with 
those of inscribed and circumscribed ellipsoids. The convexity can be replaced by 
various smoothness assumptions which ensure the possibility of inscribing and 
circumscribing suitable ellipsoids. 
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In  the process we obtain a rigorous justification for the first term of the series 
for the drag coefficients obtained from slender-body theory by Burgers (1938)) 
Tuck (1964,1970), Taylor (1969)) Cox (1970)) Tillett (1970) andBatchelor (1970). 
The slender-body theory for potential flows can be justified if the boundary 
conditions are satisfied to within a certain order in e by noting that a harmonic 
function satisfies a maximum principle (see, e.g. Moran 1963, p. 295). No such 
principle is known for solutions of the Stokes equations. 

Tillett has used the rather sophisticated ideas of inner and outer expansions of 
singular perturbation theory, but his argument leans heavily on the hypothesis 
that for sufficiently small e his dual integral equations have an inverse which is 
uniformly bounded in the maximum norm. The very existence of such an inverse 
implies that the Stokes flow can always be extended inside the body to a Stokes 
flow which is singular only on the axis. Because of a scarcity of explicit solutions 
for bodies of the form r < eR(z) ,  we have not been able to find a counter example, 
but it seems unlikely that this hypothesis is always true. 

Batchelor (1970) has extended the ideas of slender-body theory to obtain a 
formal approximation to the drag of an arbitrary slender body without an 
attempt at  a rigorous proof. The following example shows that great care must be 
taken in defining the class of slender bodies t o  which the expansions are to apply. 
Consider a dumb-bell consisting of two spheres of radius e connected by a 
cylindrical rod of length 1 and diameter e-€-'. For small E this body is certainly 
slender, but we shall show in $7  that it behaves like two distant spheres. In  
particular, the ratio of the terminal speeds in the axial and perpendicular direc- 
tions approaches one rather than two. Thus while the expansions of slender-body 
theory may well be correct, their correctness has not yet been proved. A rigorous 
proof of the correctness of the first term is therefore not redundant. 

The interest in a solution of the Stokes equations lies in the fact that it is 
supposed to  be an approximation to a solution of the Navier-Stokes equations. 
It will be shown elsewhere (Weinberger 1972) that the steady falling motions ofa 
body in Stokes flow obtained here are limits as the dimensionless parameter 
pml g I /,uz approaches zero of analogous steady falling motions of the same body in 
a Navier-Stokes fluid. Here p is the density of the fluid, ,u is its viscosity and ml gl 
is the gravitational force minus the buoyant force acting on the body. 

2. Formulation of the problem 
Let D be the complement of a closed connected bounded set B with boundary B 

We consider the problem of the settling of the rigid body B under its own weight 
in a very viscous fluid which fills D. In  the Stokes approximation the instan- 
taneous velocity u and pressure p are solutions of the equations 

We shall use the usual 'summation convention and the subscript ' j '  for alax,. 
The constant ,u is the viscosity; ,up is the sum of the viscous pressure and the 
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gravitational potential. We shall take account of the buoyant force due to the 
latter in setting up our equilibrium conditions. 

Since B is rigid, the velocity must be of the form U + o x r on the boundary B .  
The vectors U and o are to be determined from the fact that the gravitational 
forces are in equilibrium with the viscous forces. These considerations lead to 
the boundary conditions 

u = ~ + o x r  on B, 1 
u+O at co, \ 

f6.fdR = mg, f x rdS  = mg x dC), §* 
where fi = aijni. 

Here n is the unit inward normal on B and g is the acceleration due to gravity. 
The mass m is the net mass, which is the difference between the mass rn' of the 
body and the mass mN of the displaced fluid. Similarly, r(c) is the effective centre of 
mass, defined by 

where r' is the centre of mass of B and rN is the centroid of B. 
Since all acceleration terms are neglected, equations (2.1) are valid in a moving 

rectangular co-ordinate system. I n  particular we choose a co-ordinate system 
attached to B. We observe that the rigid motion u = U + r  x o satisfies the 
homogeneous equations (2.1) and gives zero stress. Accordingly if we replace the 
velocity v in our moving co-ordinates, which obviously vanishes on B, by 
u = v + U + o  x r, we find that this function again satisfies the problem (2.1), 
(2.2).  We shall be interested in the situation in which the fall of the body B is 
steady, in the sense that u is independent of time in our moving co-ordinate 
system. 

The downward vector g moves in the co-ordinate system attached to the body 

dgldt = x g. according to the law 

We see from the third equation in (2.2) that if u is independent of time so is g. 
Hence we must have o = hg for some constant scalar A. Conversely, if o = hg 
with h constant, the conditions (2.2) are independent of time, so that any solution 
will be stationary, 

mr(d = m'r'-m''r'' 

We can now consider two possible problems of steady fall. 

PROBLEM 1. Given B and the vector g, find a position of the effective centre of 
mass dC), a vector U and a scalar h such that equations ( 2 . 2 )  are satisfied with 
w = hg. 

PROBLEM 2. Given B and its mass distribution, find vectors g and U and a 
scalar A such that the boundary conditions ( 2 . 2 )  are satisfied with w = hg. 

In  problem 1 we think of B as a hollow body in which masses may be moved 
about to produce a motion in which a given direction g in B points downward. 
We shall mainly treat problem 1; however, we shall show (theorem 2) that 
problem 2 is a special case of problem 1. 

I n  order to solve problem 1 we note that the torque equation in (2.2) can be 
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solved for r(e) if and only if the scalar product of the torque due to the viscous 
forces with g is zero. Thus, for problem 1 the boundary conditions reduce to 

(2.3) i 
u = U + X g x r  on B. 
u+O at 00, 

g y f d S = m g ,  g. fxrdS=O, $* 
where fi = agjnj. 

If the problem (2.1), (2.3) has a solution, it is necessary and sufficient to put the 
effective centre of mass on the vertical line 

where a is an arbitrary constant, in order to realize the steady falling motion. 
Since f is easily seen to be proportional to the weight mlgl, the line (2.4) depends 
only on the direction of g and is independent of m or lgl. The existence of the 
solution of the problem (2.1), (2.3) will be proved in $3. 

We define the settling speed of B to be the vertical component of U, which is 
also the vertical speed of every point in B, and write 

s(m,g) = u.g/lgl. (2.5) 

Since U is proportional to the ratio m[ gl /,u we see that 

depends only on the direction of 
seen that 

We shall call t ( g )  the terminal settling speed; it is simply the settling speed in a 
system of units in which mlgl/,u = 1. Once t ( g )  is known, s(m, g) can immediately 
be computed from the definition (2.6). 

Several of our results will be stated in terms of the capacity C of B which is 

and the geometry of B. Moreover, it; is easily 

(2.8) t ( - a  = w. 

defined as 

over smooth functions q5 which are unity in a neighbourhood of B and vanish at  
infinity. The minimum of the right-hand side is attained for a unique function h 
in the Sobolev space MI, 2. This function is the strong solution of the boundary- 

A h = O  in D, ) value problem 

Moreover, 

I- 1 on B,  
0 at co. 

h =  { (2.10) 

(2.11) 

Since (2.10) is a scalar problem and since harmonic functions satisfy a maximum 
principle it is much easier to approximate C than t (g) .  
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3. Variational inequalities for the terminal speed 

D we define the symmetric bilinear form 
For any two symmetric tensor fields rij and pij which are square-integrable in 

Let rij be any smooth square-integrable tensor field which has the properties 

rij,i = 0 in D, gi E i j k X j T k l n l d f i  = 0. (3.2) 

pij = lU(V<,j+vj,.t-nJij), (3.3) 

$* 
(Here eiik is the usual alternating tensor.) Let p be of the form 

where v is any smooth vector field with compact support which satisfies the 
conditions divv = 0, 

v = V + y g x r  on ..) (3.4) 
v+ 0 at infinity 

for some constant vector v and some scalar y. w e  note that the tensor& - +Pkkc$j 

is independent of the scalar function II, so that the properties of Il are unim- 
portant. 

An integration by parts now shows that 

E(T,p) = $ / i r i j -*Tkk8{ j )  (v&j+vj, i )  dx 

Therefore by (3.2) 
(3.5) 

We have derived this equation on the assumption that r and p are smooth. 
However, both sides of (3.5) are continuous in the L, norm 

provided that we interpret the right-hand side of (3.5) as 

where cp is any C, vector field which vanishes outside a bounded set and equals V 
in a neighbourhood of B. Therefore the identity (3.5) holdsfor T~~ on the closure !PI 
in L, of tensors which satisfy (3.2) and for an arbitrary pii on the closure T,in L, of 
tensor fields of the form (3.3) with v subject to the conditions (3.4). If the boun- 
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dary is not smooth, we replace the boundary conditions in (3.4) by v = V + yg x r 
in a neighbourhood of B and v = 0 outside some bounded set in deriving (3.5) 
and in defining the closure T,. The tensor fields in TI and in T, satisfy (3.2) and 
(3.3), respectively, in a weak sense. 

If  we assnme for the moment that the boundary-value problem (2.1), (2.3) has 
a solution for which the stress gij lies in TI n T2 we see from (3.5) that 

E(g ,a )  = m u . g  = mlglm,g) = ( m 2 1 g I 2 / P ) w ,  (3.6) 

which is clearly the rate of dissipation of energy in the fluid owing to the viscosity. 
Wenow chooser = uin (3.5) andletp beofthe form (3.3), wherevisanyvector 

field which satisfies the conditions (3.4). We then see that 

E(u,p) = mV.g.  (3.7) 

Since v is an arbitrarily chosen vector field the right-hand side of (3.7) as well as 
E(p, p )  can be evaluated. 

Since the quadratic form E(7,7)  is positive semi-definite, Schwarz’s inequality 

E(a,  PI2 G E(a,  W ( p ,  p )  

E(a, 4 2 (%2. V)2/E(p, PI.  

is valid. From this and (3.7) we see that 

For the purpose of simplifying the computations we observe that 

Since divv = 0 

vi,jvj,idx = $2 , jv jn ids  = vj(vi,jni-vi,inj)dS. 
S D  $* 

Because the last integral involves only v and its tangential derivatives on B,  we 
may replace v in the integral by its boundary values V + yg x r. In  this way we 
find that 

jDvi,jvj,idx = 21BllYg12, (3.9) 

where IBI is the volume of B. Therefore 

and the inequality (3.8) may be written in the form 

(3.10) 

(3.11) 

We again carry through this derivation for smooth v, and then extend it to p in 
T,. We have assumed, however, that the problem (2.1), (2.3) has a solution CT in 
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TI n T2. It follows from the identity (3.9) that the denominator E(p,p) of the 
right-hand side of (3.11) satisfies the inequality 

(3.12) 

It is easily seen that because of the conditions (3.4) the quadratic form in the 
numerator on the right of (3.11) is compact with respect to this square integral. 
It follows that, if the supremum of the right-hand side of (3.11) is finite, it is 
attained for some tensor field on the closed space T,. The usual Euler equation 
argument then shows that if cr is properly normalized it also lies in TI and satisfies 
all conditions of the problem (2.1), (2.3). Moreover, this solution is easily seen to 
be unique. 

We now note that by (3.12) and the definition (2.9) 

Thus the right-hand side of (3.11) is bounded by Irng12/4mpC. We conclude that 
the supremum is finite whenever the capacity of B is positive. Finally, we observe 
that T2 contains all continuous piecewise continuously differentiable vector fields 
which satisfy the conditions (3.4). We thus have proved the following result. 

THEOREM 1. If B is any body with positive capacity, there exists a unique weak 
solution of the problem (2.1), (2.3). The solution u gives the maximum of the 
right-hand side of (3. I 1 ) over all continuous, piecewise continuously differentiable, 
solenoidal vector fields with square-integrable gradient which vanish at infinity 
and which are of the form V + yg x r on B.  

Moreover, the terminal settling speed t (g)  satisfies the inequality 

t ( g )  > 1/4mC (3.13) 
for every direction of fall. 

We observe that the constant 4n in the inequality (3.13) is sharp in the sense 
that for a prolate spheroid of major axis I and minor axis €1 the product 4mCt(g) 
approaches one as s+O, provided g lies along the major axis. Note that since 
g occurs in the admissibility condition (3.4) as well as in the numerator of (3.1 1 ), 
t ( g )  is not a quadratic functional of g (see formula (4.13) below). 

We shall now show that for any body with a fixed mass distribution there is at  
least one direction in which the body has a steady settling motion. 

THEOREM 2. For any closed bounded connected body B with positive capacity 
and with given net mass rn and effective centre of mass r@) there is a direction g 
such that the problem ( Z . l ) ,  (2.2) is satisfied with o = hg.  

Proof. Choose the origin at the effective centre of mass, so that r(c) = 0. Let cr 
be the stress in the solution of the problem ( Z . l ) ,  (2.3) and let f be the correspond- 
ing surface force. Then for each vector g, the torque 

L(g) = $; x r d s  
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is a vector perpendicular to g. It is clear from theorem 1 that this vector depends 
continuously on g. Thus L(g) represents a tangential field on the sphere 

lgl = constant. 

By a well-known theorem of topology (see, e.g. Chinn & Steenrod 1966, theorem 
34.1) there must be a direction g for which L(g) = 0. For this g the conditions 
(2.1) and (2.2) are satisfied with o = hg. (Note that -g  also satisfies the con- 
dition. ) 

Another result of the same kind is the following. 

THEOREM 3. Given any direction go, there exists a perpendicular direction g, 
and a position dC) for the effective centre of mass such that the body B of positive 
capacity has steady falling motions in both the directions go and g,. 

Proof. Solve the problem (2.1), (2.3) for g = go and choose the origin to lie on 
the corresponding line (2.4). Then this line of possible centres of mass becomes 
r(c) = ago and the torque equilibrium condition for a motion in another direction 
g becomes 

,u $: x rdX = amg x go. 

This equation can be solved for a if and only if the torque on the left is perpendi- 
cular to both g and go. Thus, iff is the force which corresponds to the solution of 
the problem (2.1), (2.3) for g, the condition becomes 

go.L(g) = go.$ f x rdS = 0. 
B 

The left-hand side is an odd continuous function of g. Therefore we see by letting 
g vary on the circle g.go = 0, lgl = 1 that there must be at least one g, say 
g = gl, for which the condition holds. For this gl, then, we can find an a such 
that, if r ( C )  = ago, there are steady flows in the go and g, directions. (Note that 
we may replace go by - go,  g, by - g,, or both.) 

In  order to obtain an upper bound for t ( g )  we choose an arbitrary symmetric 
tensor field 7ii which satisfies the conditions (3.2) and the additional condition 

(3.14) 

We apply the identity (3.5) to this r and to p = g, where a is the stress in the 
solution of the problem (2.1), (2.3). Then (3.5) becomes 

E(7, a) = U .mg = &?(IT, I T ) .  

We again use Schwarz’s inequality for the non-negative quadratic form E(p, p )  

E(IT,   IT)^ = E(7,  IT)^ < E(r,  ~ ) E ( I T ,  I T ) ,  
and find that 

E(a,  I T )  < E(7 , r ) .  (3.15) Or 

This inequality may be stated as a minimum principle. 
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THEOREM 4. The stress u in the solution of the problem (2.1), (2.3) gives the 
minimum of the dissipation functional E(T,  T) over all symmetric stress fields 
which satisfy the conditions (3.2) and (3.14). 

We remark tha t  equality isattained in (3.15) if andonly if 7 differs from CT only 
by a hydrostatic stress. As a simple application of theorem 4 we shall prove the 
monotonicity of the settling speed as a functional of domain. 

THEOREM 5 .  Let D and D' be two domains with bounded connected comple- 
ments B and B', and suppose that B' contains B. Let B and B' have the same net 
mass m. Then the settling speeds s(m, g) and s'(m, g) in any direction g satisfy the 
inequality s'(m, g) 6 s(m, g). 

Proof. Let u be the stress which corresponds to the solution of the problem 
(2.l) ,  (2.3) for D. It clearlysatisfies theconditions(3.2)and (3.14). SinceD' c D, u 
is admissible in the minimum principle of theorem 4 for B'. Moreover, the dissi- 
pation functional E'(u,u)  integrates u over a smaller set than D .  Hence in 
obvious notation E'(a', u') < E(u, u), 

or s'@, $2) < 4% g). 
(We could also write this result in the form t ' (g )  6 t (g) . )  

Theorem 5 states that increasing the size of the body B decreases its terminal 
speed, provided that the net weight is not increased. That is, the weight of B' 
exceeds that of B by at  most the weight of the additional fluid displaced by B'. 
The result is not in general true ifB' has the same mass density as B. For example, 
the terminal speed of a sphere of fixed mass density is proportional to the square 
of its radius and hence increases with increasing size. 

Note. As we pointedout in the proof oftheorem l,m21g12t(g)/,uis thesupremum 
of the right-hand side of (3.11) over all v which satisfy (3.4) with v of the form 

V + y g x r  

in some neighbourhood of B. Such a v is then admissible in the maximum principle 
for some B' which contains a neighbourhood of B. We see by theorem 5 that t(g) 
is the upper limit of the speeds t ' (g )  of the domains B' which contain a neighbour- 
hood of B. 

If we apply the identity (3.10) to the solution u of (2.1), (2.3) we fhd  that 

(3.16) 

Since only tangential derivatives are involved in the integrand, we may replace 
u by its boundary value U + Ag x r. In this way we find that 

$Bn.[(curIu)x ( g x r ) + p g x r ] d X  = 41B11g12h. (3.17) 
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Thus if the volume IBI is not zero, we can eliminate h from (3.16) to obtain 

(3.18) 

Now let {w) 11} be a pair consisting of a vector field and a scalar field, and let 
{q, q5} be another such pair. We define the positive semi-definite bilinear form 

so that (3.18) becomes 

We now choose an arbitrary pair {w, IT} which satisfies the conditions 

i 
curl w + grad IT = 0, 

,u$B(wxn-nn)d# = mg, 

w+O, II-+Oatco. 
It is easily seen that 

(3.19) 

(3.20) 

u.curlwdx 
J D  

= $ ~ w .  n x u - n u .  n) 

1 
= - U . mg - h n . [w x (g x r) + ITg x r]dS. 

P I* 
Therefore we see from the identity (3.17) that 

E({w, II}, {u, P}) = u.mg = -WkP}? {lwl). 
By the reasoning that was used to  derive the inequality (3.15) we see that 

-ww}, { U > P I )  f({w, II}? (w, IT}). (3.21) 

We note that if B' is any bounded set containing B, then by the divergence 

(3.22) I 
theorem 

$ ~ w  x n- nn)dS = (w x n- nn)cis, 
$ k  

fBn. [w x (g x r)+ ng x r l d ~  

g.wax. 
I b - D ,  

= $*?. [w x (g x r) + ng x rids- 2 

If B is not a smooth surface, we can find a smooth surface B' in m y  neighbourhood 
of B and define the boundary integrals which occur in (3.19) and (3.20) by means 
of these identities. 
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If the volume IBI of B is zero, we apply the inequality (3.21) to any B’ with 
positive volume ]El which contains a neighbourhood of B. We see by (3.22) that 
a pair {w, 11} which satisfies the conditions (3.20) for B also satisfies them for B’ 
and we see by (3.21) that 

where t ’ (g )  is the terminal settling speed of B‘. 
Now suppose that 

$,n.[wx ( g x r ) + ~ ~ g x r ] d ~  = 0, (3.23) 

in the sense of the second identity in (3.22). It then follows from this identity and 
Schwarz’s inequality that 

(3.24) 

for any domain D‘ whose closure lies in D and whose complement B‘ is bounded. 
It follows by the note after theorem 5 that 

Finally, we observe that it is easily verified that the pair {curl u , p }  satisfies the 
conditions (3.20) and, if IBI = 0, the condition (3.23). Thus we can again sum- 
marize our results as a minimum principle. 

We define the pair {w, l3} to  be admissible if it  satisfies the conditions (3.20) 
and, if IBI = 0, also satisfies (3.23). We define 

&:w, n>, {w, n>, 

THEOREM 6. The pair {curl u ,p} ,  where u and p solve the boundary-value pro- 
blem (2.1),  (2.3), gives the minimum of the quadratic form E({w, II), {w, II}) over 
all admissible pairs {w, II>. Moreover, the minimum value is equal to Img12t(g)/p. 

We note that although theorems 4 and 6 both provide upper bounds for the 
energy dissipation, one involves a tensor and the other a pair {w, II}. Moreover, 
while the tensor 7 must satisfy three differential equations and two integral 
conditions in (3.2) and (3.14), the pair {w, II} is subjected to three differential 
equations and a single integral condition in (3.20). Thus, it is easier to  find 
admissible pairs for theorem 6 than to find admissible tensors T for theorem 4. 

As we shall see, theorem 7 (see $5) follows from theorem 6, but we have not 
been able to derive it from theorem 4. 
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4. Stability of steady fall 
We wish to justify the name 'terminal settling speed' by showing that at least 

in some circumstances the quasi-steady falling motion of B converges to a steady 
one. Brenner (1964) (see also Happel & Brenner 1965, p. 173) has shown that the 
viscous force F and torque L due to the velocity satisfying (2.1) with the given 
boundary velocity 

u = U + w x r  on B 
can be expressed in the form 

F = p( KU + C*O), L = p(CU + Qw), 

where (Z  E*) 
is a symmetric positive-definite 6 x 6 matrix. (Although Brenner only derived his 
result for smooth bodies, it can be extended to any bounded connected body with 
positive capacity by the techniques used in proving theorem 1.) The matrix (4.2) 
can be determined experimentally by measuring the force and torque when the 
body B is rigidly suspended and subjected to slow translational and rotational 
flows in each of three orientations. 

The equations of motion for the quasi-steady fall of B can therefore be written 
in the form 

(4.3) p( CU + QLW) = mg x r@, 

We solve the first two equations for o and substitute in the third to obtain the 

1 p(KU + C*w) = mg, 

dg/dt = o x g. 

equation 
p dg/dt = - mg x [Q - CK-lC*]-l [g x r@)- CK-lg]. (4.4) 

We now take a particular downward direction go and choose the origin so that 
it lies on the line (2.4) when g = go.  Then there is a steady fall in the direction go 
provided that 

We wish to show that DL. can be chosen to make this motion stable. 

we see from the first two equations of (4.3) that 

r ( C )  = ago. (4.5) 

By hypothesis, when g = go and r(C) = ago the corresponding o is Ago. Hence 

--m/p[Cl- CK-'C"]-l CK-lgo = Ago. (4.6) 

(In fact, this is a necessary and sufficient condition for the existence of a steady 
flow in the direction go  when r(c) = 0. Thus, theorem 2 follows from the fact that a 
real 3 x 3 matrix has at least one real eigenvalue.)? 

We see from the last equation in (4.3) that 1gI2 is constant in time. Thus, 
1gI2 = [go12 and hence 

lg-g0l2 = 2(lgo12-g.go). 
H. Brenner has been kind enough to send me an unpublished dissertation of his 

student A. V. Goldman (1966). In $85 and 6 of volume I, this dissertation presents it 

formulation of problem 2 which is equivalent to (4.6), as well as some stability considera- 
tions. 
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Therefore 

' 
2m dt 
- _  lg - go12 = go. g x [Q - CK-lC*]-l [ag x go - CK-lg] 

= - (g x go). [Q - CK-lC*]-l [ag x go - C K-I 

(4.7) 
by (4.4)-(4.6). Because the 6 x 6 matrix (4.2) is positive-definite, the 3 x 3 matrix 
Q - CK-lC* is also positive-definite. Therefore there is a positive constant y such 
that 

(g x go). [Q- CK-IC"1-l (g x go) 2 Ylg x 9Ol2. (4.8) 

Also, since 

there is a constant 6 such that 

[ (g x go). [Q - CK-lC*]-l CK-l (4.9) 

Thus we find that 
--/g-go12 P d  d - 
2m dt 

(4.10) 

FinalIy we observe that 

It is then easily seen that if 
algal > sir 

g converges to go exponentially unless g = - go initially. Thus, for sufficientIy 
large a (that is, when the centre of mass is sufficiently low) the steady motion with 
g = go is the limit of all falling motions except for the unstable motion with 
g = - go. Similarly, we see that for a sufficiently negative, the motion = go is 
unstable and the motion g = - go is stable. It appears likely that for most bodies 
there is an intermediate region of a where neither motion is stable. 

If the coupling matrix C = 0, then 6 = 0 and so hhe motion in hhe go direction is 
stable for a < 0, while the motion in the -go direction is stable for a > 0. 
Following Brenner (1964), we call a body B a non-skew body if a proper choice of 
origin (the centre of stress) makes C = 0. 

In  terms of the makrix (4.2) the steady-fall problem (2.1), (2.3) becomes 

I p[KU + AC*g] = mg, 
g . p ~ + ~ s z g l =  o. 

It follows from these equations and the definition (2.7) that 

and 

rn g.CK-lg A = - - -  
,U g . [Q - CK-lC"] g 

(4.11) 

(4.12) 

(4.13) 
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These expressions are independent of the choice of the origin. Brenner (1 964) 
(see also Happel & Brenner 1965, p. 174) has shown that for a suitable choice of 
the origin (the centre of reaction) C is symmetric. Since K is positive-definite and 
symmetric, C and K are then both diagonal in some (skew) co-ordinate system. 
I n  this way we see that a body B has a steady fall without spin ( A  = 0) in any 
direction if and only if it is non-skew (C = 0 when the origin is at  the centre of 
reaction). 

If g lies along a principal axis of K, the drag coefficient evaluated by solving 
the problem (2.1) with u = g on B is equal t o  [g12/(g. K-lg). Thus we see from 
(4.13) that if the body is non-skew and g lies along a principal axis of K, then 
t ( g )  is the reciprocal of the drag coefficient so determined. If the body is not non- 
skew, t ( g )  will, in general, be larger than this reciprocal. Brenner (1964) (see also, 
Happel & Brenner 1965, pp. 187-188) has shown that B is non-skew if it  is 
either axialIy symmetric or orthotropic. We wish to show that the latter class can 
be extended. 

Let B be symmetric about the origin in the sense that it is invariant under the 
transformation (xl, x2, x3) + ( - xl, - x2, - x3). It then follows from the uniqueness 
of the solution of the problem (2.1), (2.3) that 

u(-xl, -x2, -xJ = u(x1,x2,x3). 

Since g x r is an odd function of r, h = 0 for any g, so that B is non-skew. Thus 
any B which is symmetric about a point is non-skew. Clearly an orthotropic body 
(that is, a body which is symmetric about each of three orthogonal planes) is 
symmetric about a point. 

5. An isoperimetric inequality between terminal speeds and capacity 
We shall now prove the following result. 

THEOREM 7. For any body B and any three mutually perpendicular directions 

t ( i ) + t ( j ) + t ( k )  < 1/27rC 
i ,  j and k the inequality 

holds. 
Proof. Let h be the capacitary potential defined in (2.10). For a given vector g 

we define the vector field 

and the scalar function 
w = ( - m/4rC,u) g x grad h 

II = ( - m/47rC,u) g ,grad h. 

This pair satisfies the equation 

Moreover, 
curl w + grad II = 0. 
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(We have used the fact that h = 1 on B, so that ahlax, = n,ah/an.) Thus the pair 
(w, rI> satisfies the conditions (3.20). In  addition, 

so that the condition (3.23) is satisfied. Also, 

We now observe that for any three mutually orthogonal unit vectors i, j and k 

]ixgradh12+ Ij xgradhI2+]kxgradhl2 = 2Igradhl2. (5.3) 

We see from (5.2) and theorem 6 that 

with similar inequalities for j and k. If we add these three inequalities and use 
(5.3) and (2.9) we see that the inequality (5.1) is valid. Thus our theorem is 
proved. 

It is interesting to observe that for any ellipsoid our function w is exactly the 
curl of the known velocity field. It follows that equality holds in (5.1) for all 
ellipsoids. Thus the inequality (5.1) is an isoperimetric one: of all bodies of given 
capacity the ellipsoids have the largest average terminal settling speed. Since 
equality holds in (5.1) for all ellipsoids, the right-hand side can be expected to be a 
good approximation to  the left, at least for convex bodies. 

Various inequalities are known for the capacity. The best-known one is the 
isoperimetric inequality of PoincarB, Faber and Szego (see Polya & Szego 1951) 

where I BI is the volume of B. I f  we combine this inequality with (5.1) we find that 

t ( i ) + t ( j ) + t ( k )  < (6n21BI)d. (5.4) 

This is again an isoperimetric inequality: of all bodies of given volume the sphere 
has the largest average terminal settling speed. 

We note that this average speed is for a given weight. If the net mass density 
p is prescribed, the average terminal speed +[s(m, i) + s(m, j) + s(m, k)] is 

+ P I  gI2 IBI W) + t(j) + t (k) ] /~  

and is therefore bounded by a constant times I BI3. In  particular, we see that for a 
body of fixed density the terminal speed approaches zero as the volume ap- 
proaches zero. 
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6. A bound for the ratio of terminal speeds of an axially symmetric 
body 

We consider an axially symmetric body B and orient the z axis along the axis of 
symmetry. When B is allowed to fall with its axis vertical, the resulting flow is 
clearly axially symmetric. It follows from the divergence condition that the 
velocity field can be represented in terms of a stream function? +(r,  x )  by means 
of the relations 

u = curl[(-yi+xj)+], (6.1) 

where i and j are unit vectors in the x and y directions, respectively. Since B is 
non-skew and the z direction lies along a principal axis, u must be equal to 
t(k)k on the boundary, provided that we make the weight mlgl = p. It follows 
that 

q5 = &(k), grad q5 = 0 on 
$ + O  at  00. 

Moreover, q5 is a solution of the differential equation 

where 

is the Laplace operator for an axially symmetric function in a five-dimensional 
space (see Weinstein 1953). 

From (3.6) and (3.10) we see that 

t(k) = ~ / / ~ A , + )2r3drdzd~. 

We now construct a trial function for the flow corresponding to fall in the 

v = curl (yk+), x direction. We let 

which satisfies the conditions (3.4) with V = @(k) i, y = 0. It follows from theorem 

22 

t We have defined 9 to  be T - ~  times the usual stream function. 
F L M  5 2  
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Integration by parts shows that 

Thus we see from (6.5) and (6.7) that 

ID/curl curl (yk$)12dx < $t(k).  

(Equality cannot hold since must vanish at infinity.) Hence by (6.6) 

t(i) > &(k). 

We have proved the following result: 

THEOREM 8. For an axially symmetric body the terminal settling speed in the 
axial direction is less than twice the terminal settling speed in a direction per- 
pendicular to the axis. 

7. Bounds for the terminal speeds of a slender body 
We now suppose that B is convex. Let the diameter of B be 21 and suppose that 

B is inscribed in a right circular cylinder of height 21 and radius el. If B is small, we 
say that B is slender. We shall find bounds for the terminal speeds of B by means 
of theorem 5. We choose a cylindrical co-ordinate system with its origin at  the 
centre of the cylinder and its x axis along the axis of the cylinder. 

We observe that the ellipsoid of revolution 

r2/a2+z2/c2 < 1 (7.1) 

@/a2 + 1/c2 = l/Z2. (7.2) 

The ellipsoid is symmetric about the origin and hence h = 0 for its steady falling 
motions. The solution of these flows is known explicitly (Oberbeck 1876; Lamb 
1932, pp. 604-655; Happel & Brenner 1965, pp. 220-224). Therefore, if k is a 
vector along the axis of the cylinder and i is any vector perpendicular to k, 
theorem 5 yields the lower bounds 

contains the cylinder and hence also contains B,  provided 

t(i) 2 
(7.3) 

where we have defined @ = a/c and used the fact that by (7.2) 

c = Z ( $ Z + E Z ) 3 / ~ .  

These lower bounds hold for any positive value of $, and may be maximized with 
respect to $. For small e we shall use the value $ = €[log (l/e)]g, which is near the 
maximum. 
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The above lower bounds hold whether B is convex or not. We now use the con- 
vexity of B to establish upper bounds. Since B is inscribed in the cylinder it is not 
difficult to see that it must contain the vertices of a triangle whose base is a line 
of length 21 in the x direction and whose altitude is at  least €1. Since B is convex, 
it contains this triangle. We introduce a rectangular co-ordinate system with the 
y axis perpendicular to the triangle, the x axis pointing into the triangle and 
the x axis along its base. It is easily seen that the triangle contains the symmetric 
triangle &IzI < &d-x, x 2 0, y = 0. This triangle, in turn, contains the ellipse 

(7.4) 

provided that 4Z/s + C2/1  = 1. (7.5) 

(x - Z)”la2 + 22/c2 < 1,  y = 0 

The solution of the flow problem for the flat ellipse is again known, since it is 
just an ellipsoid with one of its axes of zero length. Thus theorem 5 yields 

where K and E are the complete elliptic integrals of the first and second kinds, 
respectively (see Jahnke & Emde 1945, p. 73), and we have defined 

- 
y? = a/c = *s(l/c-c/l). 

The direction k is again aIong the axis of the circumscribed cylinder and i is any 
direction normal to k. We have taken for the upper bound the largest of the 
terminal speeds of the ellipse in directions perpendicular to k, which occurs when 
g lies in the plane of the ellipse. 

We can use the identities (see Grobner & Hofreiter 1966, pp. 39-40) 

($; 1;  v- 1) (4; 1; Y)- 
E((l -$2) i )  = log= r, I p +  1 -tip ( :)v:l ( v - l ) ! v !  

(*; l ; v - l ) ( & ;  1 ; v ) -  
l )  ( v - l ) ! v !  @2v - j2 (A + 3.4 + - * .  + (2v- 3) (2v- 2) +- (2v- 1) 2v 

2 2 

to compute these bounds. As in the case of the lower bounds, we obtain an upper 
bound for each positive 9 and we may find the best bound by minimizing with 
respect to $. When s is small, we use the approximate location 

22-2 
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If we make this choice of 3 and use @ = €(log l/s)i in the lower bounds (7.3)) 
we find that for small 6 

1 1  
4n1 8 

1 1  
87Tl E 

Thus we find that t(k)--lOg- = 0 

t(i)-- log- = 0 

and hence that 

The last statement proves the Taylor conjecture for an arbitrary convex slender 
body. 

We summarize our results in the following theorem. 

THEOREM 9. Let B be a convex body with diameter 21 which can be inscribed in 
a circular cylinder of height 21 and radius 2 k .  Let t(k) be the terminal settling 
speed of B in the direction of the axis of the cylinder and let t(i) be its terminal 
settling speed in any direction perpendicular to the axis. Then the lower and 
upper bounds (7.3) and (7 .6)  hold for any positive values of @ and 3. In  particular, 
for E small (7.8) and (7.9) hold, the right-hand sides being known explicit func- 
tions of E .  The ratio t(k)/t(i) approaches two as e approaches zero. 

We observe that we have used the convexity of B only to prove that there is an 
ellipse inside B with its major axis near 1 and its minor axis of order €/log (l/e). The 
convexity condition can be replaced by the hypothesis that there is such an 
ellipse inside B. 

Better bounds can, of course, be obtained under stronger hypotheses on B. If B 
is axially symmetric as well as convex, it must contain the ellipsoid of revolution 

r2/$ + z 2 / 3  < 1 

when 

Since this ellipsoid contains the ellipse (7 .4) )  its terminal speeds give better upper 
bounds than (7 .6 ) .  However, the order of the error terms on the right is not 
reduced. 

Still better bounds can be obtained by making stronger hypotheses about B. 
If we assume with Tillett (1970) t h a t  B is an axially symmetric surface with the 
equation 

4Z2/€2 + c 2  = 1. 

Y = ER(2) ( - 1  < 2 < 1))  
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where R is continuous and positive for - 1 < z < 1, that the ends are rounded in 
the sense that R( -1) = R(1) = 0 and that near z = & 1 the body has bounded 
positive curvature, it is easy to see that there are positive constants rl and y2 
such that B contains the ellipsoid 

r2/e2q;12 + x2/12 . 1 

and is contained in the ellipsoid 

r2/e2q;12 + x2/12 < 1. 

Thus by theorem 5 we obtain the bounds 

1 2-3s272, 1+(1-€27;)+ --j. 1 .-[ 167~1 (1 - $q;)% log €V1 1 - €27; 
For small e we then see that 

and hence 

(7.10) 

Since B axially symmetric, the k and i directions lie a,mg principal axes of 
the matrix K. Thus t(k) and t(i) are the reciprocals of the eigenvalues of K. Since 
these eigenvalues are the drag coefficients for flows in the k and i directions 
respectively, the formulae (7.10) verify the first term of the expansions obtained 
by means of slender-body theory (Batchelor 1970; Burgers 1938; Cox 1970; 
Taylor 1969; Tillett 1970; Tuck 1964, 1970). 

The fact that the approximate relation t(k)/t(i) r 2 requires more than just 
the slenderness of B can be seen from the following example. Let B consist of the 
union of a sphere of radius e centred at the origin and the ellipsoid of revolution 
whose equation in cylindrical co-ordinates is 

r2 22 +- sinh2S cosh2S ‘ ’. (7.11) 

The constant 6 will be so small that sinh 6 < e. 
The length of B is thus cosh 6, which is greater than 1, while its width is e, so 

that its aspect ratio is less than c. We shall show that if 6 is chosen so small that 
8 approaches zero as e-f 0, then the ratio t(k)/t(i) approaches one rather than 
two as e approaches zero. 
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The terminal speed f of a ball of radius s is known to be 1/6m for all g. By 
theorem 5, t(k) Q i. In  order to find a lower bound for t(k), we must construct a 
vector field v which is admissible in theorem 1. The solution u for the fall of the 
ball alone in the z direction is known explicitly and can be written in the form 
(6 .1) :  

u = curl[(-yi+xj)#], (7.12) 

where (7.13) 

In  order to obtain a velocity field which is admissible in theorem 1 for the body 
B, we need to replace 4 by a function 6 which is constant on all of B and whose 
gradient is zero on B. We replace the co-ordinates ( z ,  r )  by the bipolar co-ordi- 
nates ( 6 , ~ )  which are defined implicitly by the conformal mapping 

z + i r  = sin(f;+iy) 

or z = sintcoshq, r = costsinhy. 

The angular variable 8 is retained in the new co-ordinates. The set q = constant 
gives the ellipsoid 

z2/cosh2 y + r2/sinh2 q = 1 

with minor axis sinh q and foci at r = 0, z = & 1.  
We choose any infinitely differentiable function 7(a) with the properties 

7 = 0  for a < O ,  ?-=I for a a 1 ,  O Q 7 < 1 ,  

and set (7 .14)  

Then the vector field v = curl [( - yi + xj) $1 is solenoidal and has the value fk on 
B.  It is therefore admissible in theorem 1. Moreover, v = u outside the ellipsoid 

z2/cosh2 69 + r2/sinh2 84 < 1. 

Therefore E(v, v) exceeds E(u, u) = tl by at most 2,u times the integral of lgradvI2 
inside this ellipsoid and outside the sphere r2+z2  = s2. We now observe that 
el # 1, c2 I grad # 1, and s3 times the second derivatives of q5 are uniformly bounded on 
this set, as are 7 and its first two derivatives. Thus there is a constant K such that 

+r%-2(1log61-2+ llogS1-4)y-41cos (t+iq)1-4 

+ r2c-21 log 61 -27-21 sin ( E  + i y  ) 12 I cos ([ + i y  ) 1-61 r I cos (t + i y  ) I 2 dcdq. 

Using the facts that r = cos 6 sinh y and that I cos (6 + iy ) 1 = cos2 6 + sinh2q, we 
find that there is a constant if such that 

E(v, v) < i[ 1 + if(s-lllog 61 -1 + € 4 6  + €-562)] .  

If S is chosen so small that Sd+ 0 as e-f 0, the term in brackets approaches one, 
and we then see from theorems 1 and 5 that t(k)/Z-+ 1 as s+O. 

To obtain the same result for t(i) we need only observe that the velocity field 
for the fall of the sphere in the x direction is given by 

u = curl [( - zj + yk) $1 
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with 9 again defined by (7.13)) and use the trial function 

v =  curl[(-zj+yk)qJ] 
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with 4 defined by (7.14) in theorem 1. Since both t(k)/Z and t(i)/Z approach one, 
the ratio t(k)/t(i) also approaches one as e - f  0, as we claimed. 

We see from theorem 5 that t(k)/t(i) still approaches one as e+ 0 if B consists 
of the union of a ball of radius e and any set that is contained in the ellipsoid 
(7.11)) provided a€-+ 0 as e - f  0. For example, we can put a thin cylindrical tail on 
the sphere to obtain a slender flagellate. 

The above technique is easily extended to show that attaching a sufficiently 
thin tail of arbitrary length to any body changes each t(g) by an arbitrarily small 
amount. In  particular, we can show that if two spheres of radius 6 with their 
centres at r = 0, x = & 1 are connected by a cylindrical rod of radius 6 and if 
&+ 0 as e+ 0 then t(k)/t(i) will approach the value that is obtained for the spheres 
alone with the constraint that they cannot spin. A dilatation by a factor e-l 
shows that this ratio is the same as that for two unit spheres with their centres a 
distance 2e-1 apart. Since for small e there is little interaction between these 
spheres the ratio can be shown to approach one. Thus, our dumb-bell is another 
example of a slender body for which t(k)/t(i) does not approach two. 

Finally we observe that all our bounds are obtained from flow along the princi- 
pal axes of various ellipsoids. Since an ellipsoid is a non-skew body, its terminal 
speed is a quadratic functional of the direction. Thus upper and lower bounds for 
the terminal speed t(k cos 8 + i sin 8 )  can be obtained by adding cos2 8 times the 
corresponding bound for t(k) to sin28 times the bound for t(i). For example, we 
see from (7.8) that 

2 cos2 8 + sin2 8 log- 1 = 0 (log log:). 
87i-I? 8 

t(k cos 8 + i sin 8)  - 
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